首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14130篇
  免费   1965篇
  国内免费   1319篇
电工技术   446篇
技术理论   5篇
综合类   1030篇
化学工业   2166篇
金属工艺   1190篇
机械仪表   368篇
建筑科学   946篇
矿业工程   402篇
能源动力   2232篇
轻工业   293篇
水利工程   659篇
石油天然气   1390篇
武器工业   61篇
无线电   1121篇
一般工业技术   2163篇
冶金工业   460篇
原子能技术   90篇
自动化技术   2392篇
  2024年   38篇
  2023年   718篇
  2022年   956篇
  2021年   985篇
  2020年   1018篇
  2019年   902篇
  2018年   755篇
  2017年   765篇
  2016年   681篇
  2015年   646篇
  2014年   764篇
  2013年   913篇
  2012年   872篇
  2011年   1070篇
  2010年   729篇
  2009年   735篇
  2008年   692篇
  2007年   684篇
  2006年   586篇
  2005年   506篇
  2004年   401篇
  2003年   339篇
  2002年   286篇
  2001年   206篇
  2000年   207篇
  1999年   187篇
  1998年   160篇
  1997年   110篇
  1996年   96篇
  1995年   71篇
  1994年   90篇
  1993年   38篇
  1992年   32篇
  1991年   26篇
  1990年   23篇
  1989年   25篇
  1988年   23篇
  1987年   15篇
  1986年   24篇
  1985年   9篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1970年   2篇
  1959年   2篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
寒区河道凌汛灾害河势“弯道效应”的量化评估十分重要。基于分形理论提出河道横断面-纵剖面-平面多维度河势分形维数计算方法及其物理机制,并探讨黄河内蒙古段不同维度河势演变分形特征及其与凌汛灾害的关联关系。结果表明,黄河内蒙古段不同维度河势均具有多尺度自相似分形特征,且具有多年记忆周期的长程相关性;冰坝(严重性冰塞)发生频次与河道主槽弯曲分形维数呈正相关指数型函数关系,与河相系数、深泓点高程和河段平均底坡分形维数负相关,与水深-面积分形维数正相关,总体表明冰坝灾害更易发生于主槽偏移摆动大、蜿蜒曲折、河湾发育程度高的宽浅型弯曲河道,研究成果可为凌汛期冰塞冰坝灾害易发河段诊断及预测提供重要理论依据。  相似文献   
2.
《Ceramics International》2022,48(12):17086-17094
The composition of polymer derived ceramics could be readily tuned through controlling the structure and element content of the polymer precursors, and investigation on the effect of the element on microstructure evolution is important to the design of advanced ceramics. In this article, the effect of carbon content in SiBCO polymer precursors was systematically investigated. The polymer network and thermal stability of polymer precursors and the carbon content of pyrolyzed SiBCO ceramic could be readily tuned by controlling the DVB amount used. Carbon contributed to the formation of graphitic carbon in SiBCxO ceramics and inhibited the growth of β–SiC and SiO2 crystals at 1600 °C, but lead to an increase in the graphitic carbon phase at 1800 °C.  相似文献   
3.
Efficient and sustainable Janus catalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly desirable for future hydrogen production via water electrolysis. Herein we report an active Janus electrocatalyst of amorphous-crystalline cobalt-molybdenum bimetallic phosphide heterostructured nanosheets on nickel foam (CoMoP/CoP/NF) for efficient electrolysis of alkaline water. As-reported CoMoP/CoP/NF consists of amorphous bimetal phosphide nanosheets doped with crystalline CoMoP/CoP heterostructured nanoparticles on NF. It can efficiently catalyze both HER (η = 127 mV@100 mA cm?2) and OER (η = 308 mV@100 mA cm?2) in alkaline electrolyte with long-term durability. Serving as anode and cathode of water electrolyzer, CoMoP/CoP/NF generates electrolytic current of 10, 50 and 100 mA cm?2 at low voltage of 1.50, 1.59, and 1.67 V, respectively.  相似文献   
4.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
5.
To satisfy arising energy needs and to handle the forthcoming worldwide climate transformation, the major research attention has been drawn to environmentally friendly, renewable and abundant energy resources. Hydrogen plays an ideal and significant role is such resources, due to its non-carbon based energy and production through clean energy. In this work, we have explored catalytic activity of a newly predicted haeckelite boron nitride quantum dot (haeck-BNQD), constructed from the infinite BN sheet, for its utilization in hydrogen production. Density functional theory calculations are employed to investigate geometry optimization, electronic and adsorption mechanism of haeck-BNQD using Gaussian16 package, employing the hybrid B3LYP and wB97XD functionals, along with 6–31G(d,p) basis set. A number of physical quantities such as HOMO/LUMO energies, density of states, hydrogen atom adsorption energies, Mulliken populations, Gibbs free energy, work functions, overpotentials, etc., have been computed and analysed in the context of the catalytic performance of haeck-BNQD for the hydrogen-evolution reaction (HER). Based on our calculations, we predict that the best catalytic performance will be obtained for H adsorption on top of the squares or the octagons of haeck-BNQD. We hope that our prediction of most active catalytic sites on haeck-BNQD for HER will be put to test in future experiments.  相似文献   
6.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
7.
The speed of the oxygen evolution reaction seriously affects the hydrogen production efficiency of water electrolysis. Hence it is crucial to develop efficient and durable OER electrocatalysts. Construction of heterojunction catalysts is also one of the strategies to develop efficient catalysts. In this paper, a pea-like Cu/Cu2S–C3 Mott?Schottky electrocatalyst was self-constructed by vapor deposition, while CF (copper foam) was used as substrate material and copper source, and thiourea was served as sulfur source. The built-in electric field is formed at the metal-semiconductor interface, which endows it with promising electrocatalytic performance. As the working electrode, the overpotentials of Cu/Cu2S–C3 required to reach the current density of 10 and 50 mA cm?2 were about 170 and 335 mV. The impact of the Mott-Schottky structure on the catalyst was also reflected in stability. The i-t tests of the sample Cu/Cu2S–C3 were carried out under 10 and 60 mA cm?2 and performed well.  相似文献   
8.
In this work, copper sulfide particles are synthesized with different Co doping concentrations such as 0, 1 and 5% at 80 °C by optimizing synthesis times from 1 to 3 h. Copper sulfide particles possess two structural phases of covellite CuS and digenite Cu9S5. The increase in synthesis time from 1 to 3 h increases the Cu9S5 phase growth and changes the morphology from flower to microsphere. The CuS synthesized with 0, 1 and 5% Co dopant concentrations demonstrate flower consisting of agglomerated nanosheets, microsphere and flower like microsphere. The elemental investigation substantiates Co ions presence in CuS microspheres. The A1g (LO) mode intensity is decreased with increase in Co dopant concentration confirming Co incorporation into CuS microsphere. The CuS synthesized with 0, 1, 5% Co dopants exhibit 322 mV, 305 mV and 289 mV to attain 100 mA/cm2 in 1 M KOH seawater. The CuS synthesized with 5% Co dopant demonstrates higher double layer capacitance (Cdl) of 173.9 mFcm?2 and lower charge transfer resistance (Rct) of 6.07 Ω with 78.84% retention after 10 h continuous stability than that of the other pristine (118.3 mFcm?2, 13.72 Ω) and 1% Co doped CuS microsphere (165.7 mFcm?2, 8.55 Ω) indicating more surface active site and rapid charge carrier transport, respectively.  相似文献   
9.
Development of highly efficient and cheap electrocatalysts towards the hydrogen evolution reaction (HER) is of great importance for electrochemical water splitting. Herein, hybrid Cu/NiMo-P nanowires on the copper foam were successfully fabricated via a simple two-step method. The hierarchically structured Cu/NiMo-P exhibits large surface areas and rapid electron transfer ability, leading to enhanced catalytic activity. The as-prepared Cu/NiMo-P electrodes need overpotentials of 34 mV and 130 mV to obtain 10 mA cm?2 for HER in acidic and alkaline solutions, respectively. Density functional theory (DFT) calculations reveal that the Cu/NiMo-P hybrid has a more thermo-neutral hydrogen adsorption free energy and enhanced charge transfer ability as well.  相似文献   
10.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号